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Background

Vanessa Paige Chelvan
. - . - Correspondent
Nearly one in five cars sold in 2023 was electric. ‘
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SINGAPORE - Singapore is forecast to have the largest share of passenger electric
vehicles (EVs) in South-east Asia by 2040, according to a report from Bloomberg’s
energy research service BloombergNEF.

A total of 80 per cent of all passenger vehicles here are expected to be electric by

that year, compared with a regional average of 24 per cent, the report said.

Thailand, in second place, is forecast to have a 41 per cent share, followed by

Vietnam (31 per cent), Indonesia (25 per cent), Malaysia (15 per cent) and the
' Philippines (10 per cent).
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[1] International Energy Agency. Global EV Outlook 2024, Trends in electric cars. (FCL) FUTURE
[2] Land Transport Authority Singapore, Electric Vehicles. Available at: https://www.lta.gov.sg/content/ltagov/en/industry_innovations/technologies/electric_vehicles.html Emﬁinom
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Motivation: grand challenges

The transition to EV will increase electricity demand, thus putting tremendous strain on the power

grid.

EVlocad  sesreeeeeen . .

Non-EV load Challenges on power grid
* voltage quality

...................... . component overloading
* phase unbalance
* power loss
: Accurate modeling of the EV charging demand is crucial.
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Load profile of EV and non-EV load

(FCL) FUTURE
CITIES
LABORATORY

[POW]ering the City, 15 Oct 2024 4



Large-scale mobility data
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EV mobility modeling and charging demand estimation
Mobile phone data (EV mobility)

Low coverage
Low resolution

Mobile phone data ]

Mobility pattern analysis;
Data augmentation with TimeGeo [1]

Ak? 3 High coverage
i Mobility data High resolution

06/01/2022
7:59.08 AM

EV mobility in Singapore [EV charging demand ] Charging Simulation
[1]1Jiang, S., Yang, Y., Gupta, S., Veneziano, D., Athavale, S. and Gonzalez, M.C., 2016. The TimeGeo modeling framework for (FCL) FUTURE
urban mobility without travel surveys. Proceedings of the National Academy of Sciences, 113(37), pp.E5370-E5378. CITIES
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EV charging demand estimation, mitigate grid load
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Charging demand estimation

Aggregate EV load for the whole of Singapore Mobility Input Profiles
: (a) Inputwith individual-level trajectory (IM)
1000 | 1 .
(IM) Individual-level *  Connected to grid

. Battery SOC < 20% or SOC is not sufficient for
the next trip(s)
(b) Input with collective-level mobility (CM)
*  Departure, arrival distribution & average daily
driving distance of EVs
(spatial information is not available)

(CM) Arrival/Departure

EV load (MW)
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Hour of day
* |IMand CM shows similar shape; yet IM shows lower peaks and higher saturated load at non-peaks
 CMassumed home-base charging; hence, higher peak in the evening.
* IMhas high spatial-temporal resolution of trip information; thus, EVs may charge at locations other
than home in the setting of IM input at non-peak hours.
(e.g. EVs are charged at the workplace)
* IM portrays more realistic and accurate modelling of EV charging than using CM.
* This shows the significance of utilizing spatial information (individual-level trajectory). T—
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Duck-Curve Flattening

PV: BAS_2050, EV adoption: 0.5

PV: BAS_2050, EV adoption: 1
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U V1G adoption primarily addresses valley filling,
whereas V2G adoption offers the capability for both
peak shaving and valley filling.

U The potential for V1G and V2G adoption increases with
the rise in EV adoption rates, driven by the expanding
"moving battery" storage capacity from EVs.

Q4 If there is insufficient solar energy generation, the overall
energy generated by fossil fuel plants increases with the
EV adoption rate due to the need for EVs to draw energy
from the main grid to support daily travel.

-
BAS-2050: PV deployment with basic scenario (2.5 GW)

ACC-2050: PV deployment with accelerated scenario (5 GW)
MAX-2050: PV deployment with maximum solar potential (8.6 GW)

Base: no EV scenario

Uncontrolled: EV charging is not controlled/coordinated.
V1G: unidirectional charging only

V2G: Bidirectional charging




Rapidly dispatchable plant reduction

BAS-2050, EV (50%) BAS-2050, EV (100%)
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PV deployment scenario

O Uncontrolled charging increase the number of
additional rapid power plants.

U Controlled charging methods, such as V1G and V2G,
significantly reduce the ramping requirement,
consequently lowering the cost of additional power
plants while enhancing grid stability.

U The coordinated planning of PV systems and EVs
yields the most significant benefits.

BAS-2050: PV deployment with basic scenario (2.5 GW)
ACC-2050: PV deployment with accelerated scenario (5 GW)
MAX-2050: PV deployment with maximum solar potential (8.6 GW)

Base: no EV scenario

Uncontrolled: EV charging is not controlled/coordinated.
V1G: unidirectional charging only

V2G: Bidirectional charging




Identifying the areas that require grid upgrade

Local load (district-level impact)
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(b) EV load of Jurong East planning area (mixed)
Impact of EV charging on local load profile Peak load increase and the population distribution
[1]1CAISO, C., 2012. What the duck curve tells us about managing a green grid. Calif. ISO, Shape a Renewed Future, pp.1-4. (FCL) FUTURE
[2] LTA Singapore, Electric Vehicles. Available at: https://www.lta.gov.sg/content/ltagov/en/industry_innovations/technologies/electric_vehicles.html cimes
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Identifying the areas that require grid upgrade

Power flow analysis (DC power flow model)

15- Power flow (MW) B
' Power flow has been increased especially for those
145" 1300 planning areas near the power generators (power flow
source).
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Some planning areas witness high EV charging demand,
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The additional peak flow caused by EV charging e
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Mitigate local grid load fluctuations in tropical climate
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Tropical climate poses challenges to energy stability

1000 1000
800 800 U Singapore's tropical climate
leads to highly variable solar
600 e irradiance and PV output,
osing challenges to ener
400 400 posing 9 gy
stability.
" 200 200
10:30 am 12:00 pm
Qltram Qutram o
0
Commercial area (Outram) Residential area (Sembawang)
Ideal solar irradiance Ideal solar irradiance
Actual solar irradiance Actual solar irradiance
Number of parked EVs Number of parked EVs

U The interaction between two
dynamics, PV generation, and

(2?)'.7 EV mobility, is quite

¥ complicated.
0 5 10 15 20 25 0 5 10 15 20 25
Hour of day Hour of day
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Impact of thunderstorms on power-line

Pioneer to Boon Lay Paya Lebar to Bedok Mandai to Sugei Kadut
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* Thunderstorms lead to increased loads on some lines, which can cause overloading problems and threaten power stability.
* On sunny day, power flow increase by 80.5% due to PV production.
* During thunderstorm, flow can increase up to 238.5%

* Increases in flow put higher pressure on transmission lines.

* Requires upgrade to power infrastructure.
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EV with charging strategy (V2G) flatten the line flows (selected line)

Scenarios
- No PV, no EV: baseline scenario without PV and EV
- PV only: baseline + PV

V2G and V1G could reduce peak power flow and reduce

. . ) fluctuation.
- Uncontrolled charging: baseline + PV + controlled EV charging
- V1G: baseline + PV + controlled uni-directional charging
- V2G: baseline + PV + controlled bi-directional charging
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Conclusion

Conclusion

* EV mobility modelling from mobile phone data.

 Utilize spatial information (individual-level
trajectory)

* Peak load reduction (with EV and PV)
e Show V2G reduced grid load variability by using
fine-grained spatial-temporal mobility patterns.
* Local grid load in tropical climates

* Thunderstorms impacted PV generation and grid
stability.

* V2G could be used to stabilize the load
fluctuation.

Recommendation

« Stationary Battery Storage & Decentralized
business model for solar investment

« WP4. Socioeconomic

 Change in the urban landuse archetype
* Adaptive landscape mobility generation
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Business models for Solar Investment in Singapore

’ Front-end

Centralized expansion
planning

Decentralized expansion
planning

From centralized to decentralized investment manner

______________________________
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